

April 15-16, 2025 | Hotel X, Toronto, Canada

Your guide to the event: Scan the QR code for speaker bios, topic previews, and the complete agenda

Instagram @Hatch.Global

#HatchSymposium #Poweringpositivechange

700~800 kV overhead transmission lines

Adeel Afzal Global Lead, Transmission Lines, Hatch

Agenda

- Why Discuss 700~800 kV Transmission Lines
- 2 History of 700~800 kV Transmission Lines
- 3 Comparison with Other Voltage Levels
- 4 Design Considerations
- 5 Questions

+

Why Discuss 700~800 kV Transmission Lines

The Need for Discussing 700~800 kV Lines

- Large Projects Planned in this Voltage Range
- Very Limited Global Experience for this Voltage Range
- Competes with HVDC for:
 - Transmitting energy over medium-long distance
 - Interconnecting large isolated systems
- Overlay on existing transmission network

+

History

History Leading up to 800 kV lines

Hydro Quebec	1 st 735 kV Transmission Line in Y1965
AEP	1st 765 kV Transmission Line in Y1969
Brazil	765 kV
Venezuela	765 kV
Russia	787 kV. [1000~1200 kV designed. Operated at 500 kV]
Japan	1000 kV designed. Operated at 500 kV
South Africa	765 kV
South Korea	765 kV
India	1 st 765 kV in Y2007
Pakistan	765 kV [under construction]
China	750 kV

Highest AC transmission voltages in North America (EPRI 1982)

Very few 765 kV Lines in US

----- 765 kV

MISO Tranche 2.1

Very few 735 kV Lines in Canada [HQ]

Very few 765 kV Lines in South Africa

Very few 765 kV Lines in South Korea

765 kV Line

+

Comparisons

- Right of Way and Heights
- Power Transfer Limits
- Cost and Feasibility
- Overall Pros and Cons

+

Comparisons

- Right of Way and Heights
- Power Transfer Limits
- Cost and Feasibility
- Overall Pros and Cons

Right of Way Width and Height Comparison-1

Right of Way Width and Height Comparison-2

Comparison of Right of Way Width and Tower Height [345 kV vs 765 kV]

RoW Configuration 345 kV

RoW Configuration 765 kV

Comparison of Right of Way Width and Tower Height [500 kV vs 765 kV]

RoW Configuration 500 kV

RoW Configuration 765 kV

Overlap Comparison View Right of Way Width vs Tower Height

+

Comparisons

- Right of Way and Heights
- Power Transfer Limits
- Cost and Feasibility
- Overall Pros and Cons

Comparison of Power Transfer Limits

Comparison of Power Transfer Limits St. Clair Curve

_

Comparisons

- Right of Way and Heights
- Power Transfer Limits
- Cost and Feasibility
- Overall Pros and Cons

Cost Comparisons - AC/AC and AC/DC

AC vs DC

Cost Comparisons – When is 800 kV Feasible

	High	765 kV	765 kV	765 kV	HVDC	
Power Flow	Medium	765 kV 500 kV	765 kV 500 kV	765 kV	HVDC	
	Low	345 kV	500 kV	765 kV 500 kV	765 kV HVDC	
		Short	Medium	Long	Very Long	
		Line Length				

Comparisons

- Right of Way and Heights
- Power Transfer Limits
- Cost and Feasibility
- Overall Pros and Cons

Overall Pros and Cons

Comparative Factors		Single Circuit Lines			Double Circuit	HVDC Bi-pole
		345 kV x6	500 kV x3	765 kV x1	345 kV x3	+/- 525 kV
	Width	<u>4</u> 270	₫ 165	<u>4</u> 1 60	1 135	<u>4</u> 1 60
Right of Way /	Height	37	<u>4</u> 1 41	47	₫ 45	₄ 45
Environmental	Window Impact (Width x Height)	4	4	ı	4	
	Cost (% of 765 kV)	390%	240%	100% 100%	320%	60% 60%
Cost	Terminal station			10070		
	Thermal losses N-1 flexibility					
	Growth and interconnections					
Planning and Operational Factors	Potential for longer distance					
	Sustained Forced Outages per 100-km-					
	year O&M experience					

+

Design Considerations [Fair warning: Technical Information Ahead!!]

Tower Design Options

Tower Design Options

Considerations for Insulation Design

765 kV

HATCH

Conductor Surface Gradient Comparison

Configuration	Voltage	Conductor Surface Gradient (kV/cm)	Mitigation
Single bundle	230 kV	17	
Twin bundle	345 kV	18	
Quad bundle	500 kV	17	
	765 kV	24	Increase sub- conductor spacing.
Hex bundle	765 kV	19	

Electric Field Comparison

Radio Interference Comparison

Audible Noise Comparison

Space Potential Comparison

Questions

+ Thank you.

For more information, please visit www.hatch.com

